个人基本信息

杨维强 副教授
导师级别:博士生导师、硕士生导师
学科:物理
职务:
社会兼职:

联系方式

通信地址:辽宁省大连市沙河口区黄河路850号
电子邮件:woshiyangweiqiang@163.com
办公电话:
办公地点:

个人简介

理学博士,博士研究生导师,
(1) 主持国家级科研项目3项:国家自然科学基金面上项目(12175096),国家自然科学基金青年基金项目(11705079),国家自然科学基金应急管理项目(11647153),主持辽宁省教育厅一般项目1项(L201683666)。
(2) 2019年入选辽宁省兴辽英才计划-青年拔尖人才,2020年入选辽宁省百千万人才-千层次人选。
(3)(截至2022年2月)已发表SCI论文73篇(39篇第一作者论文、35篇Nature Index期刊论文、35篇中科院top期刊、45篇论文影响因子大于5、46篇JCR-1区论文),累计影响因子大于300,论文累计被引用2800余次,单篇第一作者论文最高被引用188次,inspire-hep统计的H指数为33。
(4) 2021年3月与诺贝尔物理学奖得主Adam Riess的合作论文(截止2022年2月)已被引用337次,2021年论文[JCAP, 2018, 09, 019]获 IOP出版社“中国高被引论文奖”,与国际知名理论物理学家John Barrow教授(英国剑桥大学)的合作论文[PRD, 2018, 97(4), 043529]已被引用68次,与挪威奥斯陆大学的David Mota已合作多篇论文,在国际上有一定的学术影响力。
(5) European Physical Journal C、Scientific Reports等国际主流学术期刊的审稿人,中国物理学会会员。已毕业硕士研究生2人,在读硕士研究生6人。
研究生招生专业:理论物理
 

个人学习经历

2011.9-2015.6  大连理工大学  物理学院                   理论物理专业        博士学位    导师:徐立昕 教授
2008.9-2011.6  辽宁师范大学  物理与电子技术学院  理论物理专业        硕士学位    导师:吴亚波 教授
2004.9-2008.6  辽宁师范大学  物理与电子技术学院  物理学(师范)专业  学士学位
 

个人工作经历

2018.12至今       辽宁师范大学  物理与电子技术学院  副教授
2015.9-2018.11  辽宁师范大学  物理与电子技术学院  讲师
 

研究工作概况

本人从事于理论物理专业、引力理论与宇宙学研究方向的基础理论研究工作,兴趣领域;现代宇宙学、暗能量理论、引力波物理。
(截至2021年12月)已发表的部分SCI论文如下:(论文及被引用情况见 外部链接
[1] Eleonora Di Valentino*, Olga Mena, Supriya Pan, Luca Visinelli, Weiqiang Yang, Alessandro Melchiorri, David F Mota, Adam Riess, Joseph Silk, In the realm of the Hubble tension—a review of solutions, Classical and Quantum Gravity, 2021, 38(15), 153001. (合作者Adam Riess为诺贝尔物理学奖获得者,已被引337次)
[2] Weiqiang Yang*, Supriya Pan, Eleonora Di Valentino, Rafael C. Nunes, Sunny Vagnozzi, David F. Mota, Tale of stable interacting dark energy, observational signatures, and the H0 tension, JCAP, 2018, 09, 019. (影响因子: 5.839, 已被引188次, IOP出版社“中国高被引论文奖”)
[3] Weiqiang Yang*, Eleonora Di Valentino, Supriya Pan, Arman Shafieloo, Xiaolei Li, Generalized emergent dark energy model and the Hubble constant tension, Physical Review D, 2021, 104(6), 063521. (影响因子: 5.296)
[4] Weiqiang Yang*, Supriya Pan, Llibert Areste Salo, Jaume de Haro, Theoretical priors on the interacting vacuum scenarios, Physical Review D, 2021, 103(8), 083520. (影响因子: 5.296)
[5] Weiqiang Yang*, Eleonora Di Valentino, Supriya Pan, Spyros Basilakos, Andronikos Paliathanasis, Metastable dark energy models in light of Planck 2018: Alleviating the H0 tension, Physical Review D, 2020, 102(6), 063503. (影响因子: 5.296)
[6] Weiqiang Yang*, Eleonora Di Valentino, Olga Mena, Supriya Pan, Dynamical Dark sectors and Neutrino masses and abundances, Physical Review D, 2020, 102(2), 023535. (影响因子: 5.296)
[7] Weiqiang Yang*, Eleonora Di Valentino, Olga Mena, Supriya Pan, Rafael C. Nunes, All-inclusive interacting dark sector cosmologies, Physical Review D, 2020, 101(8), 083509. (影响因子: 5.296)
[8] Weiqiang Yang*, Supriya Pan, Eleonora Di Valentino, Andronikos Paliathanasis, Jianbo Lu, Challenging bulk viscous unified scenarios with cosmological observations, Physical Review D, 2019, 100(10), 103518. (影响因子: 5.296)
[9] Weiqiang Yang*, Olga Mena, Supriya Pan, Eleonora Di Valentino, Dark sectors with dynamical coupling, Physical Review D, 2019, 100(8), 083509. (影响因子: 5.296)
[10] Weiqiang Yang*, Mohd Shahalam, Barun Pal, Supriya Pan, Anzhong Wang, Constraints on quintessence scalar field models using cosmological observations, Physical Review D, 2019, 100(2), 023522. (影响因子: 5.296)
[11] Weiqiang Yang*, Supriya Pan, Eleonora D. Valentino, Emmanuel N. Saridakis, Subenoy Chakraborty, Observational constraints on one-parameter dynamical dark-energy parametrizations and the H0 tension, Physical Review D, 2019, 99(4), 043543. (影响因子: 5.296)
[12] Weiqiang Yang*, Ankan Mukherjee, Eleonora D. Valentino, Supriya Pan, Interacting dark energy with time varying equation of state and the H0 tension, Physical Review D, 2018, 98(12), 123527. (影响因子: 5.296)
[13] Weiqiang Yang*, Supriya Pan, Eleonora Di Valentino, Olga Mena, Alessandro Melchiorri, 2021-H_0 Odyssey: Closed, Phantom and Interacting Dark Energy Cosmologies, JCAP, 2021, 10, 008. (影响因子: 5.839)
[14] Weiqiang Yang*, Eleonora Di Valentino, Supriya Pan, Yabo Wu, Jianbo Lu, Dynamical dark energy after Planck CMB final release and H0 tension, MNRAS, 2021, 501(4), 5845-5858. (影响因子: 5.287)
[15] Weiqiang Yang*, Eleonora Di Valentino, Supriya Pan, Olga Mena, Emergent Dark Energy, neutrinos and cosmological tensions, Physics of the Dark Universe, 2021, 31, 100762. (影响因子: 4.243)
[16] Weiqiang Yang*, Supriya Pan, David F. Mota, Minghui Du, Forecast constraints on anisotropic stress in dark energy using gravitational waves, MNRAS, 2020, 497(1), 879-893. (影响因子: 5.287)
[17] Weiqiang Yang*, Supriya Pan, Eleonora Di Valentino, Bin Wang, Anzhong Wang, Forecasting Interacting Vacuum-Energy Models using Gravitational Waves, JCAP, 2020, 05, 050. (影响因子: 5.839)
[18] Weiqiang Yang*, Supriya Pan, Rafael C. Nunes, David F. Mota, Dark calling Dark: Interaction in the dark sector in presence of neutrino properties after Planck CMB final release, JCAP, 2020, 04, 008. (影响因子: 5.839)
[19] Weiqiang Yang*, Supriya Pan, Andronikos Paliathanasis, Subir Ghosh, Yabo Wu, Observational constraints of a new unified dark fluid and the H0 tension, MNRAS, 2019, 490(2), 2071-2085. (影响因子: 5.287)
[20] Weiqiang Yang*, Narayan Banerjee, Andronikos Paliathanasis, Supriya Pan, Reconstructing the dark matter and dark energy interaction scenarios from observations, Physics of the Dark Universe, 2019, 26, 100383. (影响因子: 4.243)
[21] Weiqiang Yang*, Supriya Pan, Sunny Vagnozzi, Eleonora Di Valentino, David F. Mota, Salvatore Capozziello, Dawn of the dark: unified dark sectors and the EDGES Cosmic Dawn 21-cm signal, JCAP, 2019, 11, 044. (影响因子: 5.839)
[22] Weiqiang Yang*, Sunny Vagnozzi, Eleonora Di Valentino, Rafael C. Nunes, Supriya Pan, David F. Mota, Listening to the sound of dark sector interactions with gravitational wave standard sirens, JCAP, 2019, 07, 037. (影响因子: 5.839)
[23] Weiqiang Yang*, Supriya Pan, Lixin Xu, David F. Mota, Effects of Anisotropic Stress in Interacting Dark Matter - Dark Energy Scenarios, MNRAS, 2019, 482(2), 1858-1871. (影响因子: 5.287)
[24] Weiqiang Yang*, Supriya Pan, Andronikos Paliathanasis, Cosmological constraints on an exponential interaction in the dark sector, MNRAS, 2019, 482(1), 1007-1016. (影响因子: 5.287)
[25] Weiqiang Yang*, Supriya Pan, Andronikos Paliathanasis, Latest astronomical constraints on some non-linear parametric dark energy models, MNRAS, 2018, 475(2), 2605-2613. (影响因子: 5.287)
[26] Weiqiang Yang*, Hang Li, Yabo Wu, Jianbo Lu, Cosmological constraints on coupled dark energy, JCAP, 2016, 10, 007. (影响因子: 5.839)
[27] Weiqiang Yang, Lixin Xu*, Testing coupled dark energy with large scale structure observation, JCAP, 2014, 08, 034. (影响因子: 5.839)
[28] Weiqiang Yang*, Supriya Pan, Ramon Herrera, Subenoy Chakraborty, Large-scale (in) stability Analysis of an Exactly Solved Coupled Dark-Energy Model, Physical Review D, 2018, 98(4), 043517. (影响因子: 5.296)
[29] Weiqiang Yang*, Supriya Pan, John D. Barrow, Large-scale stability and astronomical constraints for coupled dark-energy models, Physical Review D, 2018, 97(4), 043529. (影响因子: 5.296)
[30] Weiqiang Yang*, Supriya Pan, David F. Mota, Novel approach toward the large-scale stable interacting dark-energy models and their astronomical bounds, Physical Review D, 2017, 96(12), 123508. (影响因子: 5.296)
[31] Weiqiang Yang*, Narayan Banerjee, Supriya Pan, Constraining a dark matter and dark energy interaction scenario with a dynamical equation of state, Physical Review D, 2017, 95(12), 123527. (影响因子: 5.296)
[32] Weiqiang Yang*, Rafael C. Nunes, Supriya Pan, David F. Mota, Effects of neutrino mass hierarchies on dynamical dark energy models, Physical Review D, 2017, 95(10), 103522. (影响因子: 5.296)
[33] Weiqiang Yang, Lixin Xu*, Coupled dark energy with perturbed Hubble expansion rate, Physical Review D, 2014, 90(8), 083532. (影响因子: 5.296)
[34] Weiqiang Yang, Lixin Xu*, Cosmological constraints on interacting dark energy with redshift-space distortion after Planck data, Physical Review D, 2014, 89(8), 083517. (影响因子: 5.296)
[35] Weiqiang Yang, Lixin Xu*, Yuting Wang, Yabo Wu, Constraints on a decomposed dark fluid with constant adiabatic sound speed by jointing the geometry test and growth rate after Planck, Physical Review D, 2014, 89(4), 043511. (影响因子: 5.296)
[36] Weiqiang Yang, Lixin Xu*, Unified dark fluid with fast transition: Including entropic perturbations, Physical Review D, 2013, 88(2), 023505. (影响因子: 5.296)
[37] Supriya Pan, Jaume de Haro, Weiqiang Yang*, Jaume Amoros, Understanding the phenomenology of interacting dark energy scenarios and their theoretical bounds, Physical Review D, 2020, 101(12), 123506. (影响因子: 5.296)
[38] Supriya Pan, Weiqiang Yang*, Eleonora D. Valentino, Emmanuel N. Saridakis, Subenoy Chakraborty, Interacting scenarios with dynamical dark energy: observational constraints and alleviation of the H0 tension, Physical Review D, 2019, 100(10), 103520. (影响因子: 5.296)                                              
[39] Supriya Pan, Weiqiang Yang*, Chiranjeeb Singha, Emmanuel N. Saridakis, Observational constraints on sign-changeable interaction models and alleviation of the H0 tension, Physical Review D, 2019, 100(8), 083539. (影响因子: 5.296)
[40] Minghui Du, Weiqiang Yang, Lixin Xu*, Supriya Pan, David F. Mota, Future Constraints on Dynamical Dark-Energy using Gravitational-Wave Standard Sirens, Physical Review D, 2019, 100(4), 043535. (影响因子: 5.296)
[41] Supriya Pan, German S. Sharov, Weiqiang Yang*, Field theoretic interpretations of interacting dark energy scenarios and recent observations, Physical Review D, 2020, 101(10), 103533. (影响因子: 5.296)
[42] Supriya Pan, Emmanuel N. Saridakis, Weiqiang Yang*, Observational Constraints on Oscillating Dark-Energy Parametrizations, Physical Review D, 2018, 98(6), 063510. (影响因子: 5.296)
[43] Supriya Pan, Weiqiang Yang*, Eleonora D. Valentino, Arman Shafieloo, Subenoy Chakrabory, Reconciling H0 tension in a six parameter, JCAP, 2020, 06, 062. (影响因子: 5.839)
[44] Supriya Pan, Weiqiang Yang*, Andronikos Paliathanasis, Non-linear interacting cosmological models after Planck 2018 legacy release and the H0 tension, MNRAS, 2020, 493(3), 3114-3131. (影响因子: 5.287)
[45] Supriya Pan, Weiqiang Yang*, Andronikos Paliathanasis, Imprints of an extended Chevallier-Polarski-Linder parametrization on the large scale of our universe, EPJC, 2020, 80(3), 274. (影响因子: 4.59)
[46] Jaume Haro, Weiqiang Yang, Supriya Pan*, Reheating in quintessential inflation via gravitational production of heavy massive particles: A detailed analysis, JCAP, 2019, 10, 007. (影响因子: 5.839)
[47] Hang Li*, Weiqiang Yang, Liping Gai, Astronomical bounds on the modified Chaplygin gas as an unified dark fluid model, Astronomy & Astrophysics, 2019, 623, A28. (影响因子:5.802)
[48] Hang Li*, Weiqiang Yang, Yabo Wu, Constraint on the generalized Chaplygin gas as an unified dark fluid model after Planck 2015, Physics of the Dark Universe, 2018, 20, 60-66. (影响因子: 4.243)
[49] Hang Li*, Weiqiang Yang, Yabo Wu, Ying Jiang, New limits on coupled dark energy model after Planck 2015, Physics of the Dark Universe, 2018, 20, 78-87. (影响因子: 4.243)
[50] Mohd Shahalam*, Weiqiang Yang, Ratbay Myrzakulov, Anzhong Wang, Late-time acceleration with steep exponential potentials, EPJC, 2017, 77(12), 894. (影响因子: 4.59)
[51] Xue Zhang, YaBo Wu*, Weiqiang Yang, Chengyuan Zhang, Bohai Chen, Nan Zhang, Post-Newtonian parameter in generalized non-local gravity, Science China Physics, Mechanics & Astronomy, 2017, 60(10), 100411. (影响因子:5.122)
[52] Jianbo Lu*, Molin Liu, Yabo Wu, Yan Wang, Weiqiang Yang, Cosmic constraint on massive neutrinos in viable f(R) gravity with producing \LambdaCDM background expansion, EPJC, 2016, 76(12), 679. (影响因子: 4.59)
[53] Jun Wang, Yabo Wu*, Yongxin Guo, Weiqiang Yang, Lei Wang, Energy conditions and stability in generalized f(R) gravity with arbitrary coupling between matter and geometry, Physics Letters B, 2010, 689, 133. (影响因子:4.771)
[54] Yabo Wu*, Weiqiang Yang, Cong Wang, Lei Wang, Modified Chaplygin gas an interacting holographic dark energy model, Science China Physics, Mechanics & Astronomy, 2010, 53(4): 598-606. (影响因子:5.122)